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5.1 INTRODUCTION 

5.2 PROPERTIES OF MATERIALS 

The materials may be classified in terms of their conductivity σ, in mhos per meter (Ʊ m) or 

Siemens per meter (S m), as conductors and nonconductors, or technically as metals and 

insulators (or dielectrics). The conductivity of a material usually depends on temperature and 

frequency. A material with high conductivity (   ) is referred to as a metal whereas one with 

low conductivity (   ) is referred to as an insulator. A material whose conductivity lies 

somewhere between those of metals and insulators is called a semiconductor. The values of 

conductivity of some common materials as shown in Table (5.1). From this table, it is clear that 

materials such as copper and aluminum are metals, silicon and germanium are semiconductors, 

and glass and rubber are insulators. 

The conductivity of metals generally increases with decrease in temperature. At temperatures 

near absolute zero (      ), some conductors exhibit infinite conductivity and are called 

superconductors. Lead and aluminum are typical examples of such metals.  

The major difference between a metal, a semiconductor and an insulator lies in the amount of 

electrons available for conduction of current. Dielectric materials have few electrons available 

for conduction of current in contrast (with respect to) to metals, which have an abundance of free 

electrons.[2] 

In a crystalline solid, such as a metal or a diamond, atoms are packed closely together, many 

more electrons are present, and many more permissible energy levels are available because of the 

interaction forces between adjacent atoms. We find that the energies which may be possessed by 

electrons are grouped into broad ranges, or “bands,” each band consisting of very numerous, 

closely spaced, discrete levels. At a temperature of absolute zero, the normal solid also has every 

level occupied, starting with the lowest and proceeding in order until all the electrons are located. 

The electrons with the highest (least negative) energy levels, the valence electrons, are located in 

the valence band. If there are permissible higher-energy levels in the valence band, or if the 

valence band merges smoothly into a conduction band, then additional kinetic energy may be 

given to the valence electrons by an external field, resulting in an electron flow. The solid is 

called a metallic conductor. The filled valence band and the unfilled conduction band for a 

conductor at OK are suggested by the sketch in Fig. 5.2a. 

If, however, the electron with the greatest energy occupies the top level in the valence band and a 

gap exists between the valence band and the conduction band, then the electron cannot accept 
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additional energy in small amounts, and the material is an insulator. This band structure is 

indicated in Fig. 5.1b. 

An intermediate condition occurs when only a small „„forbidden region” separates the two bands, 

as illustrated by Fig. 5.1c. Small amounts of energy in the form of heat, light, or an electric field 

may raise the energy of the electrons at the top of the filled band and provide the basis for 

conduction. These materials are insulators which display many of the properties of conductors 

and are called semiconductors. 

 

Fig. 5.1 the energy-band structure in three different types of materials at 0 K. 

5.3 CURRENTS AND CURRENT DENSITY 

5.3.1 CURRENT: 

The current through a given area (surface) or a given reference point is the electric charge 

passing through the area or a given reference point per unit time. The current is the scalar 

quantity and symbolized by I, therefore; 

  
  

  
                                                                                                                                                               

Note that: 

 The electric current is caused by the motion of electric charges. 

 The current measured in amperes ( ), milliamperes (  ) or microamperes (  ).  

5.3.2 CURRENT DENSITY: 

The current density is the increment of current    flows through an incremental surface 

   or. The current density at a given point is the current through a unit normal area at that point. 
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The current density is measured in amperes square meter       . Current density is a 

vector represented by  ⃑⃑ . 

 ⃑⃑  
  

  
                                                                                                                                                      

If the current density is perpendicular to the surface, therefore 

                                                                                                                                                                

If the current density is not normal (not perpendicular) to the surface, therefore 

    ⃑⃑                                                                                                                                                             

The total current flowing through a surface   is obtained by integrating: 

  ∫  ⃑⃑    

 

                                                                                                                                                       

There are different kinds of current densities:  

(1) Convection current density 

(2) Conduction current density 

(3) Displacement current density. 

Convection current: 

As distinct from conduction current, does not involve conductors, does not satisfy Ohm's 

law. It occurs when current flows through an insulating medium such as liquid, rarefied gas, or a 

vacuum. A beam of electrons in a vacuum tube, for example, is convection current. 

Current density related to the velocity of volume charge density at a point. 

If the charge of density,    is flow in the filament at velocity        as shown in 

Figure (5.2). 

u

x

y

z

 

Fig. 5.2 Current in a filament. 



Electromagnetic Fields                      Chapter 5: conductors, dielectrics, and capacitance 

18 

From equation (5.1), the current through the filament in Figure (5.2) is: 

  
  

  
 

  

  
 

     

  
 

        

  
       

  

  
                                                                        

The  -directed current density    is given by: 

   
  

  
 

        

  
                                                                                                                            

In general 

 ⃑⃑                                                                                                                                                                  

Note that: 

 This type of current   is called the convention current and   or     is the convection 

current density.  

 The convection current density is related linearly to charge density    as well as to 

velocity  . 

Current density related to conductivity of conductor   and electric field intensity  . 

The conduction current (due to the valence electrons, or conduction, or free, electrons, 

move under the influence of an electric field) requires a conductor. When an electric field ( ) is 

applied to the conductor, the force on an electron with charge (    ) is: 

                                                                                                                                                                 

In free space the electron would accelerate and continuously increase its velocity and 

energy; in the crystalline material the progress of the electron is impeded by continual collisions 

with the thermally excited crystalline lattice structure, and a constant average velocity is soon 

attained. This velocity of electron (u) is termed the drift velocity, and it is linearly related to the 

electric field intensity (E) by the mobility of the electron (  ) in the given material, so that. 

                                                                                                                                                              

If the electron is not in free space, it will not be accelerated under the influence of the 

electric field. Rather, it suffers constant collision with the atomic lattice and drifts from one atom 

to another. If the electron with mass ( ) is moving in an electric field ( ) with an average drift 

velocity ( ), according to Newton's law, the average change in momentum of the free electron 

must match the applied force. Thus, 
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where   is the average time interval between collisions and the drift velocity of the 

electron is directly proportional to the applied field. 

If there are ( ) electrons per unit volume, the electronic charge density is given by. 

                                                                                                                                                               

The conduction current density is 

 ⃑⃑            ( 
  

 
 )  

    

 
                       

 ⃑⃑                                                                                                                                                                 

This relationship is known as the point form of Ohm's law.  

  
    

 
                                                                                                                                            

where   is the conductivity of the conductor measured in Siemens per meter (S/m),    is 

the free-electron charge density (   ) and    is the mobility of an electron (   ) measured in 

square meters per volt-second.[1,2]  

5.4 CONTINUITY OF CURRENT AND RELAXATION TIME. 

5.4.1 CONTINUITY OF CURRENT EQUATION. 

The principle of conservation of charge states that charges can be neither created nor 

destroyed, although equal amounts of positive and negative charge may be simultaneously 

created, obtained by separation, destroyed, or lost by recombination. 

The continuity equation follows from this principle, if we consider any region bounded 

by a closed surface. The current through the closed surface  

  ∮  ⃑⃑    

 

                                                                                                                                                    

If The charge inside the closed surface is denoted by,   , then the rate of decrease is 

(       ) and the principle of conservation of charge requires is: 

  ∮  ⃑⃑    
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Note that: 

 The current of equation (5.16) is an outward-flowing current,  

 Equation (5.16) is the integral form of the continuity equation of current, and  

The differential, or point, form is obtained by using the divergence theorem to change 

the surface integral into a volume integral: 

∮  ⃑⃑    

 

 ∫    ⃑⃑    

   

 

The enclosed charge    by the volume integral of the charge density, 

∫    ⃑⃑    

   

  
 

  
∫   

   

   

If the surface constant, the derivative becomes a partial derivative and may appear 

within the integral, 

∫    ⃑⃑    

   

 ∫  
   

  
  

   

 

Since the expression is true for any volume, however small, it is true for an incremental 

volume.  

(   ⃑⃑ )    
   

  
         

(   ⃑⃑ )   
   

  
                                                                                                                                              

Equation (5.17) is called the continuity of current equation. 

5.4.2 RELAXATION TIME. 

Having discussed the continuity equation and the properties σ and ε of materials, it is 

appropriate to consider the effect of introducing charge at some interior point of a given material 

(conductor or dielectric).  

Ohm's law                                           ⃑⃑      

The continuity equation 

   ⃑⃑   
  

 

  
 

In which  ⃑⃑  and    both involve only free charges, we have 
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or  

  (
 

 
)     

   

  
 

If assumed that the medium is homogeneous, so that   and   are not functions of position, 

       (
 

 
)
   

  
                                                                                                                                         

Now can be used Maxwell‟s first equation to obtain, 

    (
 

 
)
   

  
                                                                                                                                             

Let us now make the simplifying assumption that   is not a function of   . This is 

probably not a very good assumption, for we found in equation (5.11a), that σ depended on both 

   and the mobility, but it leads to an easy solution that at least permits us to compare different 

conductors. We simply rearrange and integrate directly, obtaining. 

       
            

  
                                                                                                                       

where  

  
 

 
                                                                                                                                                               

In this equation,    is the initial charge density (i.e.,    at    ). The equation shows 

that as a result of introducing charge at some interior point of the material there is a decay of 

volume charge density   . Associated with the decay is charge movement from the interior point 

at which it was introduced to the surface of the material. The time constant T in seconds is 

known as the relaxation time or rearrangement time. 

Relaxation time is the time it takes a charge placed in the interior of a material to drop to 

         percent of its initial value. It is short for good conductors and long for good 

dielectrics. 

Example 5.1: 

Given the vector current density is  ⃑⃑                           : (a) find current density 

at                 ; (b) determine the total current flowing outward through the 

circular band    ,       ,        . 
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Solution: 

 ⃑⃑                           

 ⃑⃑                                                                 

Example 5.2: 

If the current density  ⃑⃑   
 

                       
 , calculate the current passing 

through (a) A semispherical shell of radius       (b) A spherical shell of radius      . 

Solution:  

(a) A semispherical shell of radius       in this case                           

  ∫  ⃑⃑    

 

 ∫ (
 

  
                 )                 

 

 

  ∫ ∫
 

  
                    

 
 

 

  

 

 ∫ ∫
 

 
              

 
 

 

  

 

            

 (b) The only difference is that we have       instead of     
 

 
 and      . Hence, 

  ∫ (
 

  
                 )                 

 

 

  ∫ ∫
 

  
                   

 

 

  

 

 ∫ ∫
 

 
              

 

 

  

 

     

Example 5.3:  

The current density that is directed radially outward and decreases exponentially with time, 

 ⃑⃑  
 

 
          

 . Calculate (a) the total outward current when    m and    m at the 

same time,    ; and compare the result, (b) find the volume charge density, and (c) the 

velocity. 

Solution: (a) 

  ∫  ⃑⃑    

 

                                             

  ∫ (
 

 
      )                 
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       (
 

 
   )  (∫ ∫            

 

 

  

 

)  (
 

 
   )         

When,                 ⇒                   (
 

 
   )                

When,                 ⇒                   (
 

 
   )                

The total current is larger at    m than it is at    m. 

(b)  First we use the continuity equation of current: 

 
   

  
    ⃑⃑  

   ⃑⃑   In spherical coordinate is: 

   ⃑⃑  
 

  

 

  
       

 

     

 

  
       

 

     

   

  
 

   ⃑⃑  
 

  

 

  
(  

 

 
   )  

 

  
    

We find the volume charge density by integrating (   ⃑⃑ ) with respect to  .  

 
   

  
 

 

  
    

    ∫
 

  
      

 

  
         

(c) To find the velocity                                          

   
  

  
 

 
    

 
     

        

The velocity is greater at    m than it is at    m, and we see that some force is accelerating 

the charge density in an outward direction. 

5.5 METALLIC CONDUCTORS 

Consider an isolated conductor, such as shown in Figure (5.2a). A conductor has abundance of 

charge that is free to move. 

When an external electric field    is applied,  

 The positive free charges are pushed along the same direction as the applied electric field,  

 The negative free charges move in the opposite direction.  
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The free charges do two things.  

 First, they accumulate on the surface of the conductor and form an induced surface 

charge.  

 Second, the induced charges set up an internal induced field   , which cancels the 

externally applied field   .  

The result is illustrated in Figure (5.2b). This leads to an important property of a conductor: 
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(a) (b)  

Fig. 5.2 (a) A conductor under applied electric field; (b) a conductor under static conditions. 

Note that: 

1.  A perfect conductor cannot contain an electrostatic field within it. 

2. A conductor is called an equipotential body, implying that the potential is the same 

everywhere in the conductor.  

This is based on the fact that,                

To maintain a finite current density  ⃑⃑ , in a perfect conductor (   ), requires that the electric 

field inside the conductor must vanish. In other words, (   ) because (   ) in a perfect 

conductor. If some charges are introduced in the interior of such a conductor, the charges will 

move to the surface and redistribute themselves quickly in such a manner that the field inside the 

conductor vanishes. According to Gauss's law, if    , the charge density     must be zero. 

                                                                                                                             

The application of Ohm's law in point forms equation (5.13). Initially, let us assume that  ⃑⃑  and   

are uniform, as they are in the cylindrical region shown in Fig. 5.3. In the case of Figure (5.3) an 

electric field must exist inside the conductor to sustain the flow of current. As the electrons 

move, they encounter some damping forces called resistance. We will derive the resistance of the 

conducting material. Suppose the conductor has a uniform cross section S and is of length L. 
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  ∫  ⃑⃑    

 

                                                                                                                                              

     ∫     

 

 

     ∫   
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Fig. 5.3 A conductor of uniform cross section with length L under an applied   field 

  
 

 
     

 

 
           

  
 

  
  

The ratio of the potential difference between the two ends of the cylinder to the current entering 

the more positive end as the resistance of the cylinder. 

                                                                                                                                                                  

  
 

  
                                                                                                                                                             

We may write general expression for resistance when the fields are nonuniform, 

  
   

 
 

 ∫      
 

 

∫  ⃑⃑    
 

 
 ∫      

 

 

∫      
 

                                                                                                      

The line integral is taken between two equipotential surfaces in the conductor, and the surface 

integral is evaluated over the more positive of these two equipotential.[1,2] 
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Example 5.4:  

A typical example of convective charge transport is found in the Van de Graaff generator where 

charge is transported on a moving belt from the base to the dome as shown in Fig 5.4. If a 

surface charge density           is transported at a velocity of      , calculate the charge 

collected in    . Take the width of the belt as 10 cm. 

Solution: If     surface charge density,    speed of the belt, and    width of the belt,  

The current on the dome is 

       

The total charge collected in     s is 

                                   

 
Fig. 5.4 Van de Graaff generator 

Example 5.5: 

A wire of diameter      and conductivity           has                        when an 

electric field of         is applied. Determine 

(a) The charge density of free electrons (b) The current density (c) The current in the wire 

(d) The drift velocity of the electrons. Take the electronic charge as                . 

Solution: In this particular problem, convection and conduction currents are the same. 

                                                              

                                                                     

                               (
   

 
)  

  

 
                    

                       ⇒    
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Example 5.6: 

A lead               bar of square cross section (       ) has a hole bored of radius 

       along its length of    . Find the resistance between the square ends. 

 

Fig. 5.5 Cross section of the lead bar 

Solution: 

Since the cross section of the bar is uniform, 

Where,                       
 

 
    ,      hence, 
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5.6 CONDUCTOR PROPERTIES AND BOUNDARY CONDITIONS 

If assumed static conditions and let time vary for a few microseconds to see what happens when 

the charge distribution is suddenly unbalanced within a conducting material. There suddenly 

appear a number of electrons in the interior of a conductor. The electric fields set up by these 

electrons are not counteracted by any positive charges, and the electrons therefore begin to 

accelerate away from each other. This continues until the electrons reach the surface of the 

conductor or until a number of electrons equal to the number injected have reached the surface. 

For static conditions: in which no current may be flow.  

 The electric field intensity within the conductor is zero (zero charge density).  

 Charge may appear on the conductor surface as a surface charge density.  

If an electric field were present, then conduction electrons would move and produce a current, 

thus leading to a nonstatic condition. 

If the external electric field intensity is decomposed into two components:  

( )  one tangential and 

(  ) one normal to the conductor surface. 

Note that: 

 For static conditions, the tangential electric field intensity    and electric flux density    

are zero. 

 For nonstatic conditions, the tangential electric field intensity    and electric flux density 

   are not zero. 

 The electric flux density in      leaving the surface normally is equal to the surface 

charge density in     , or                    

To determine the boundary conditions, we need to use Maxwell's equations: 

∮                                                                                                                                                           

∮                                                                                                                                                       

A. DIELECTRIC-DIELECTRIC BOUNDARY CONDITIONS: 

To determine boundary conditions at the interface of two dielectrics. Consider the electric field 

intensity E existing in a region consisting of two different dielectrics material characterized by 

         and          as shown in Figure (5.6a).    and    in media 1 and media 2, 

respectively, can be decomposed as 
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E

E2

1
E1n

E1t

E2n

E2t

∆w

∆h

a

b

c

d

ε 

1

2

ε 

(a)

Dielectric 1

Dielectric 2

 

D

D2

1
D1n

D1t

D2n

D2t

∆h

ε 
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ε 

(b)

∆S

Dielectric 1

Dielectric 2

 

Fig. 5.6 Dielectric-dielectric boundary. 

                                                                                                                                                        

                                                                                                                                                        

Apply equation (    ) to the closed path [a-b-c-d-a] of Figure (5.6a) assuming that the path is 

very small with respect to the variation of E. Around the closed path [a-b-c-d-a]. The integral 

must be broken up into four parts. 

∮        ∫ 

 

 

∫ 

 

 

∫ 

 

 

∫  

 

 

  

Let the length from a to b or c to d be    and from b to c or d to a be   , then. 

         

  

 
    

  

 
          

  

 
    

  

 
                                                              

As    approach to zero     . Hence 

(1) The tangential component of   is continuous across a dielectric interface. In symbols, 

                                                                                                                                                                

or 
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(2) The normal component of   has a discontinuity of magnitude      across a dielectric 

interface. Similarly, we apply equation (    ) to the Figure (5.6b). Allowing      gives 

                    

                                                                                                                                                       

or 

            
  

  
                                                                                                                                     

Generally if the interface will have no free charges i.e. (    ), so that 

                                                                                                                                                              

or 

                                                                                                                                                           

Finding the field on one side of the boundary given the field on the other side 

Consider    or    and    or    making angles    and    with the normal to the interface as 

illustrated in Figure 5.7. Using equation (5.26), we have 

                        

                                                                                                                                                   

Similarly, by applying equation (5.30) or (5.31), we get 

                            

                                                                                                                                              

Dividing equation (5.32) by equation (5.33) gives 

     

  
 

     

  
                                                                                                                                              

     

     
 

   
   

                                                                                                                                                   

This is the law of refraction of the electric field at a boundary free of charge (since      is 

assumed at the interface). Thus, in general, an interface between two dielectrics produces 

bending of the flux lines as a result of unequal polarization charges that accumulate on the sides 

of the interface. 
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B. CONDUCTOR-DIELECTRIC BOUNDARY CONDITIONS: 

To determine the boundary conditions for a conductor-dielectric interface, the same procedure 

used for dielectric-dielectric interface except that we incorporate the fact that     inside the 

conductor. Applying equation (5.21) to the closed path [a-b-c-d-a] of Figure (5.7a). Around the 

closed path [a-b-c-d-a]. The integral must be broken up into four parts 

∮        ∫ 

 

 

∫ 

 

 

∫ 

 

 

∫  

 

 

  

Let the length from a to b or c to d be    and from b to c or d to a be   , then.  

         
  

 
     

  

 
            

  

 
    

  

 
                                                              

As we allow    approach to zero     . Hence 

                                                                                                                                        

EEn

Et ∆w

∆h
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b
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d
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Dielectric

Conductor (E=0)

 

DDn

Dt
∆h

(b)

∆S

Conductor (E=0)

Dielectric

 

Fig. 5.7 Conductor-dielectric boundary 

The condition on the normal field is found most readily by considering    rather than    and 

choosing a small cylinder as the gaussian surface. Let the height be    and the area of the top 

and bottom faces be   . Again we shall let    approach zero. Using Gauss's law, 

∮             
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We integrate over the three distinct surfaces, 

∮        ∫  

   

∫  

      

∫  

    

  

The last two are zero (for different reasons). Then 

             

                                                                                                                                                                

These are the desired boundary conditions for the conductor- dielectric boundary in 

electrostatics, 

                                                                                                                                                    

                                                                                                                                                  

Notes: 

 The electric flux leaves the conductor in a direction normal to the surface,  

 The value of the electric flux density numerically equal to the surface charge density. 

The principles which apply to conductors in electrostatic fields, we may state that: 

1. The static electric field intensity inside a conductor is zero. 

2. The static electric field intensity at the surface of a conductor is everywhere directed 

normal to that surface. 

3. The conductor surface is an equipotential surface (when      ).[1] 

An important application of the fact that     inside a conductor is in electrostatic screening or 

shielding. If conductor A kept at zero potential surrounds conductor B as shown in Figure (5.8), 

B is said to be electrically screened by A from other electric systems, such as conductor C, 

outside A. Similarly, conductor C outside A is screened by A from B. Thus conductor A acts like 

a screen or shield and the electrical conditions inside and outside the screen are completely 

independent of each other. 

  Fig. 5.8 Electrostatic screening. 
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C. CONDUCTOR-FREE SPACE BOUNDARY CONDITIONS: 

This is a special case of the conductor-dielectric conditions and is illustrated in Figure (5.9). The 

boundary conditions at the interface between a conductor and free space can be obtained from 

equation (5.40) by replacing    by 1 (because free space may be regarded as a special dielectric 

for which     ). We expect the electric field E to be external to the conductor and normal to 

its surface. Thus the boundary conditions are: 

                                                                                                                                                       

                                                                                                                                                    

D

E

Dn

Dt
En

Et

Conductor (E=0)

Free space

 

Fig. 5.9 Conductor-free space boundary. 

5.7 THE METHOD OF IMAGES: 

One important characteristic of the dipole field is the infinite plane at zero potential that exists 

midway between the two charges. The conductor is an equipotential surface at a potential   

 , and the electric field intensity is normal to the surface.[1] 

The method of images, is commonly used to determine  ,  ,  , and    due to charges in the 

presence of conductors. Using this method, we avoid solving Poisson's or Laplace's equation. 

Although the method does not apply to all electrostatic problems, it can reduce a formidable 

problem to a simple one. 

The typical examples of point, line, and volume charge configurations are portrayed in Figure 

(5.10a), and their corresponding image configurations are in Figure (5.11b). 

In applying the image method, two conditions must be satisfied: 

1. The image charges must be located in the conducting region. 

2. The image charges must be located such that on the conducting surfaces the potential is zero 

or constant. 

The first condition is necessary to satisfy Poisson's equation, and the second condition ensures 

that the boundary conditions are satisfied.[2]  
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Figure 5.10 Image system: (a) charge configurations above a conducting plane; (b) image 

configuration with the conducting plane replaced by equipotential surface. 

5.8 SEMICONDUCTORS 

In an intrinsic semiconductor material, such as pure germanium or silicon, two types of current 

carriers are present,  

 Holes.  Electrons and

The electrons are those from the top of the filled valence band which have received sufficient 

energy (usually thermal) to cross the relatively small forbidden band into the conduction band. 

The forbidden-band energy gap in typical semiconductors is of the order of one electron-volt. 

The vacancies left by these electrons represent unfilled energy states in the valence band which 

may also move from atom to atom in the crystal. The vacancy is called a hole, and many 

semiconductor properties may be described by treating the hole as if it had a positive charge of e, 

a mobility,    and an effective mass comparable to that of the electron. Both carriers move in an 

electric field, and they move in opposite directions. The conductivity is therefore a function of 

both hole and electron concentrations and mobilities, 

                                                                                                                                                   

As temperature increases, the mobilities decrease, but the charge densities increase very rapidly. 

Note that the conductivity of the intrinsic semiconductor increases with temperature, while that 

of a metallic conductor decreases with temperature; this is one of the characteristic differences 

between the metallic conductors and the intrinsic semiconductors. 

Intrinsic semiconductors also satisfy the point form of Ohm's law; that is, the conductivity is 

reasonably constant with current density and with the direction of the current density. 

The number of charge carriers and the conductivity may both be increased dramatically by 

adding very small amounts of impurities. Donor materials provide additional electrons and form 

n-type semiconductors, while acceptors furnish extra holes and form p-type materials. The 

process is known as doping, and a donor concentration in silicon as low as one part in     

causes an increase in conductivity by a factor of    .[1] 
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Example 5.7:  

Given the potential,              and a point           that is stipulated to lie on a 

conductor-free space boundary, let us find        and    at  , and also the equation of the 

conductor surface. 

Solution: The potential at point   is:              [        ]        the conductor is an 

equipotential surface, the potential at the entire surface must be      . The potential everywhere 

in and on the conductor is 300 V, for     within the conductor.          

  

  
                                      

  

  
                                           

  

  
   

                           

                                               
 

 ⁄  

 

Fig. 5.11 the equipotential surface through   is        , and the streamline through   is 

     . 

                                                  
  

The field is directed downward and to the left at P; it is normal to the equipotential surface.  

                            

Thus, the surface charge density at   is 

                          

Note that if we had taken the region to the left of the equipotential surface as the conductor, 

the   field would terminate on the surface charge and we would let,  

               

The equation representing the locus of all points having a potential of       is 

                       ⇒                      

This is therefore the equation of the conductor surface. 
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Example 5.8: 

Two extensive homogeneous isotropic dielectrics meet on plane    . For    ,       and 

for    ,      . A uniform electric field                     exists for    . Find. 

(a)    for    . 

(b) The angles    and    make with the interface. 

(c) The energy densities in      in both dielectrics. 

(d) The energy within a cube of side   m centered at          

Solution: 

(a) Let the example be as illustrated in Figure (5.15). Since    is normal to the boundary plane, 

we obtain the normal components as 

                (           )      

        

               

Hence, 

              ⇒                  (           )                

Thus 

                

Similarly, 

           ⇒                            ⇒           
   
   

    
 

 
          

Thus 

              ⇒         (       )                         

(b) Let    and    be the angles    and    make with the interface while    and    are the angles 

they make with the normal to the interface as shown in Figure (5.15); that is, 

         

         

      

    √     √   

      
   

   
 

√  

 
             ⇒                              

Hence,                                                                

Alternatively, 

                      ⇒       (           )    (√      )         
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√  
                  ⇒                               

Similarly,                                                       √   

      
   

   
 

√  

 
             ⇒                              

Hence,                                                                

Note that this must be satisfied 

     

     
 

   
   

        ⇒        
     

     
 

 

 
 

(c) The energy densities are given by 

    
 

 
      

  
 

 
         

  
 

 
   

    

   
(√      )

 
               

    
 

 
      

  
 

 
         

  
 

 
   

    

   
(√       )

 
               

(d) At the center          of the cube of side   ,       ; that is, the cube is in region 2 

with      ,      ,        . Hence 

   ∫       ∫ ∫ ∫    
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Fig. 5.12 for example 5.8. 
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Example 5.9:  

Region     consists of a perfect conductor while region     is a dielectric medium (    

 ) as in Figure (5.16). If there is a surface charge of         on the conductor, determine   and 

  at (a)           and (b)          . 

Solution: 

(a) Point           is in the conductor since        at  . Hence,             

(b) Point           is in the dielectric medium since       at B.                  

Hence,                                                               
       and 

  
 

    
        

   

 
                         

y

z

dielectric
ε r =2

conductor

A

B

 

Figure 5.13 for example 5.9 

Example 5.10:  

Find the surface charge density at          on the conducting plane     if there is a line 

charge of         located at    ,    , as shown in Figure (5.14a). 

Solution: We remove the plane and install an image line charge of          at    , 

    , as illustrated in Figure (5.14b). The field at   may be obtained by superposition of the 

known fields of the line charges. The radial vector from the positive line charge to   is    

         , while the vector from the negative line charge to   is             . Thus, the 

individual fields are: 
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Fig. 5.14 (a) A line charge above a conducting plane, (b) The conductor is removed, and 

the image of the line charge is added. 

   
  

      
   

 
       

    √  
(
       

√  
) 

And 

   
  

      
   

 
        

    √  
(
       

√  
) 

Adding these results, we have  

  
       

    √  
(
               

√  
)  

         

        
            

 
 ⁄  

The field is normal to the conducting plane. Thus,  

                   
  

And since this is directed toward the conducting plane,    is negative and has a value of 

            at P. 

Example 5.11: 

The values for the electron and hole mobilities are      and      , respectively at 300 K, and 

assuming hole and electron charge densities are             and             , respectively, 

find: (a) the component of the conductivity due to holes; (b) the component of the conductivity 

due to electrons; (c) the conductivity. 

Solution:  the conductivity                

(a) The component of the conductivity due to holes 

                              

(b) The component of the conductivity due to electrons 

                                

(c) The conductivity 
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5.9 CAPACITANCE AND DIELECTRIC MATERIALS 

5.9.1 POLARIZATION   IN DIELECTRIC MATERIALS: 

Dielectric materials  

 Dielectric materials become polarized in an electric field,  

 The electric flux density   is greater than it would be under free-space conditions with 

the same field intensity.  

A simplified but satisfactory theory of polarization can be obtained by treating an atom of the 

dielectric as two superimposed positive and negative charge regions, as shown in Figure (5.l5a).  

When applied an electric field intensity  , we see that: 

 The positive charge region moves in the direction of the applied field and,  

 The negative charge region moves in the opposite direction.  

This displacement can be represented by an electric dipole moment, as shown in Figure (5.l5c). 

                                                                                                                                                                

 

Fig. 5.15 Polarization of a nonpolar atom or molecule 

For most materials, the charge regions will return to their original superimposed positions when 

the applied field is removed. The work done in the distortion is recoverable when the system is 

permitted to go back to its original state.  

Where   is the distance vector from    to    of the dipole as in Figure (5.15c). If there are N 

dipoles in a volume    of the dielectric, the total dipole moment due to the electric field is: 

                      ∑    

 

   

                                                                                  

Polarization   is defined as the dipole moment per unit volume of dielectric (in coulombs/meter 

square): 

     
    

   

  
 

∑     
 
   

  
     (

 

  
)                                                                                                       
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Polarization   can account for the increase in the electric flux density, the equation being 

                                                                                                                                                          

This equation permits   and   to have different directions, as they do in certain crystalline 

dielectrics. In an isotropic, linear material   and   are parallel at each point, this is expressed by: 

                                                                                                                                            

where    is a dimensionless constant (quantity) called the electric susceptibility of the material.  

5.9.2 DIELECTRIC CONSTANT AND STRENGTH 

We have equations (5.47) and (5.48), by substituting equation (5.48) into equation (5.47), we 

obtain: 

                            

                                                                                                                         

                                                                                                                                               

Where 

                                                                                                                                                                

          
 

  
                                                                                                                                     

Where,    is adimensionless constant (quantity) known as the relative permittivity, or dielectric 

constant of the material.[3] 

The dielectric constant (or relative permittivity)    is the ratio of the permittivity of the 

dielectric to that of free space. 

The theory of dielectrics discussed so far assumes ideal dielectrics. Practically speaking, no 

dielectric is ideal. When the electric field in a dielectric is sufficiently large, it begins to pull 

electrons completely out of the molecules, and the dielectric becomes conducting. Dielectric 

breakdown is said to have occurred when a dielectric becomes conducting. Dielectric breakdown 

occurs in all kinds of dielectric materials (gases, liquids, or solids) and depends on the nature of 

the material, temperature, humidity, and the amount of time that the field is applied. The 

minimum value of the electric field at which dielectric breakdown occurs is called the dielectric 

strength of the dielectric material. 

The dielectric strength is the maximum electric field that a dielectric can tolerate or 

withstand without breakdown. 
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5.9.3 CAPACITANCE 

Any two conducting bodies separated by free space or a dielectric material have a capacitance 

between them. A voltage difference applied results in a charge    on one conductor and    on 

the other.  

The capacitance of the system is defined as the ratio of the absolute value of the charge to the 

absolute value of the voltage difference: 

  
 

 
                                                                                                                                                           

where   farad            

The capacitance depends only on the geometry of the system and the properties of the dielectric 

involved. In Figure (5.16), charge    placed on conductor 1 and    on conductor 2 creates a 

flux field as shown. The   and   fields are therefore also established. To double the charges 

would simply double   and  , and therefore double the voltage difference. Hence the ratio     

would remain fixed.[3] 

 

Fig. 5.16  

5.9.4 MULTIPLE-DIELECTRIC CAPACITORS 

When two dielectrics are present in a capacitor with the interface parallel to   and  , as shown in 

Figure (5.17a), the equivalent capacitance can be obtained by treating the arrangement as two 

capacitors in parallel Figure (5.17b). 

Fig. 5.17 
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and 

   
       

 
                                                                                                                                                 

          
  
 

                                                                                                                    

When two dielectrics are present such that the interface is normal to   and  , as shown in Figure 

(5.18a), the equivalent capacitance can be obtained by treating the arrangement as two capacitors 

in series Figure (5.18b). 

  Fig. 5.18 

   
      

  
                                                                                                                                                   

   
      

  
                                                                                                                                                   

 

   
 

 

  
 

 

  
 

           

            
                                                                                                                

The result can be extended to any number of dielectrics such that the interfaces are all normal to 

  and  : the reciprocal of the equivalent capacitance is the sum of the reciprocals of the 

individual capacitances. 

5.9.5 ENERGY STORED IN A CAPACITOR 

The energy stored in the electric field of a capacitor is given by 

   
 

 
∫                                                                                                                                               

where the integration may be taken over the space between the conductors with fringing 

neglected. If this space is occupied by a dielectric of relative permittivity   , then        , 

giving. 

   
 

 
∫      
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It is seen that, for the same field   as in free space, the presence of a dielectric results in an 

increase in stored energy by the factor     . In terms of the capacitance   and the voltage   

this stored energy is given by 

   
 

 
      

 

 
     

 

 

  

 
                                                                                                                 

Equation (5.62) indicates that the energy stored in a capacitor with a fixed potential difference 

across it increases as the dielectric constant of the medium    increases. 

5.10 FIXED-VOLTAGE   AND   

A parallel-plate capacitor with free space between the plates and a constant applied voltage  ,  

as shown in Figure (5.19), has a constant electric field intensity  . With fringing neglected. 

 

Fig. 5.19 

   
 

 
                                                                                                                                                          

and 

                                                                                                                                                              

   
   

 
                                                                                                                                                     

When a dielectric with relative permittivity    fills the space between the plates, 

                                                                                                                                                                  

and 

                                                                                                                                                               

Because voltage remains fixed, whereas the permittivity increases by the factor   . 

5.11 FIXED-CHARGE   AND   

The parallel-plate capacitor in Figure (5.20) has a charge    on the upper plate and    on the 

lower plate. This charge could have resulted from the connection of a voltage source   which 

was subsequently removed. With free space between the plates and fringing neglected, 
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In this arrangement there is no way for the charge to increase or decrease, since there is no 

conducting path to the plates. Thus, when a dielectric material is inserted between the plates, 

                                                                                                                                                                 

and 

  
 

  
                                                                                                                                                           

 

Fig. 5.20 

Example 5.12: Find the magnitudes of   and   for a dielectric material in which   

          and the electric susceptibility is         . 

Solution: Since                                 

        
    

   
                            

        
    

   
                            

Example 5.13: We locate a slab of Teflon in the region       , and assume free space where 

    and    . Outside the Teflon there is a uniform field               . We seek values 

for  ,  , and   everywhere. The electric susceptibility of Teflon is 1.1. 

Solution: Outside the slab, where     and    .                      

Outside there is no dielectric material. Therefore,                    

Now, inside the material. Thus                                                              

                                  

                                  

Example 5.14:   

Find the capacitance of the parallel plates in Figure (5.21), neglecting fringing. Assume a total 

charge    on  the upper plate and    on the lower plate. This charge would normally be 

distributed over the plates with a higher density at the edges. By neglecting fringing, the problem 
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is simplified and uniform densities          may be assumed on the plates. Between the 

plates   is uniform, directed from    , to    . 

   Fig. 5.21 

  
 

 
                         

 

     
       

The potential of the upper plate with respect to the lower plate is obtained as  

  ∫
 

     
      

 

 

         
   

     
 

Then  

      
     

 
 

Notice that the result does not depend upon the shape of the plates but rather the area, the 

separation distance, and the dielectric material between the plates. 

Example 5.15:  

A parallel-plate capacitor with area         and separation        contains three dielectrics 

with interfaces normal to   and  , as follows:        ,          ;        ,    

      ;         ,          . Find the capacitance. 

Solution: Each dielectric is treated as making up one capacitor in a set of three capacitors in 

series. 
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Example 5.16:  

A parallel-plate capacitor with free space between the plates is connected to a constant source of 

voltage. Determine how   ,  ,  , and    change as a dielectric of      is inserted between the 

plates. 

Solution:                                                             

Relationship                              Explanation 

                                                 
   

  
 

                                                

                                                       

Insertion of the dielectric causes additional charge in the amount    to be pulled from the 

constant-voltage source. 

Example 5.17:  

 A charged parallel-plate capacitor in free space is kept electrically insulated as a dielectric of 

relative permittivity 2 is inserted between the plates. Determine the changes in   ,  ,        . 

Relationship                                  Explanation 

   
 

 
                                     

 

 
      

  
 

 
                                                          

                                                          
 

 
 

Example 5.18:  

Given that                       at the charge-free dielectric interface of Figure (5.22) 

find    and the angles    and   .    

           Fig. 5.22 

Solution: 

The interface is a   constant plane. The   and   components are tangential and the   

components are normal. By continuity of the tangential component of   and the normal 

component of  : 
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The unknown components are now found from the relation  

                                 

                                   

from which 

                

                  

                                               
  

   
   

The angles made with the plane of the interface are found from 

                                    √                           

                                    √                             

A useful relation can be obtained from 

      
   

√             
 

 
   

     ⁄  

√             
 

      
   

√             
 

 
   

     ⁄  

√             
 

by division of these two equations gives 

     

     
 

   
   

 


